
DAIRY
SIRE DIRECTORY
2026

ABS PrimeTime Imported **GENOMIC** Sires _____

Genus Breeding India Private Limited (ABS India)

Registered Office: 5th Floor, C Wing, Eternia Premises CO-OP Soc, Near
DA Unit No. 505, 506, Dagdi Bunglow, Wakdewadi, Pune, MH 411005, IN

ABS India has the imported bull power from USA to provide breeding solutions to producers around the country.

These sires deliver the industry's most profitable genetics, providing dairy farmers the opportunity to take advantage of imported primetime genetics that deliver profitability through high Total Performance Index (TPI) and best set of genomic values to add profit to any herd country-wide.

Jim Low
Chief Operating Officer
ABS Global, USA

“

Dairy genetics hold the key to unlocking the next era of growth and transformation in the Indian dairy sector. At ABS, we take great pride in partnering with Indian dairy farmers on this journey empowering progress through our portfolio of elite genetics and innovative breeding solutions. Together, we are driving sustainable productivity, profitability, and prosperity in line with our vision of "Pioneering animal genetic improvement to sustainably nourish the world."

”

29H022333
OSCAR
ALTAFONSI x VENOM
+3261

29H022381
STORM-P
CALEB-X OVERDO
+3180

29H022408
MAVERICK
NITROUS x HARVEY
+3141

29H022339
HUNTER
FRITZLAN x HUBERT
+3107

29H022404
MILLENIUM
REALITY*RC x HERCULES
+3058

ABS INDIA

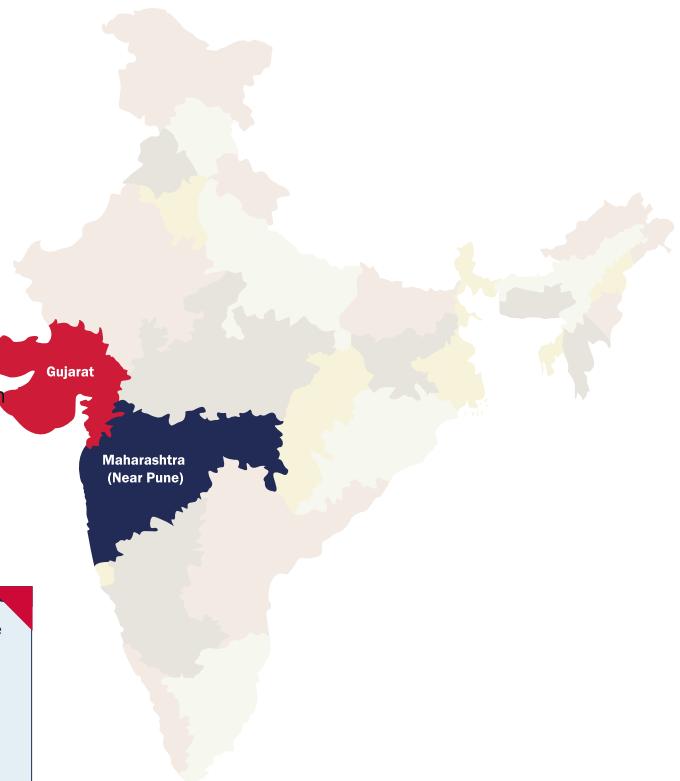
Genus Breeding India Private Limited (ABS India) is a part of Genus PLC the world's largest leading provider of bovine genetics and reproduction services, marketing in nearly 80 countries around the world. Genus Breeding India Pvt. Ltd. is a fully owned subsidiary of Genus PLC (listed on the UK stock exchange) and was established in early 2010-11. Through Genus extensive research and development programme, its cutting-edge technology is being used to maximise the potential of dairy farms throughout the world.

Genus Breeding India (ABS India) is part of ABS Global, a division of Genus PLC. Worldwide Genus PLC is the owner of ABS and PIC, the two largest companies in bovine and porcine genetics respectively. Genus PLC also owns Promar International, the leading livestock consulting company in the world.

Genus Breeding India (ABS India) has also entered into a Production JV with Chitale Dairy situated in Maharashtra for production of semen from the selected elite bulls in India through Chitale Genus ABS (India) Pvt. Ltd. ABS India adopts its international standard for selection of bulls for semen production with regards to genetics and health standards. ABS India has also started producing and marketing semen produced out of the live bulls imported from U.S.A. for the first time in the country. ABS India has a robust ET programme for semen production from bulls born through embryos imported from North America and genetically testing them.

“ Animal breeding is all about selection of elite parents with the intention to improve desirable qualities in next generation dairy animals. Looking at the present situation of Indian dairy industry, where milk and feed prices are in competition to produce quality milk; we felt the need of innovation and came up with the genetic product which is created using superior genetic merit sires, biology with engineering and world-class bio-manufacturing. **”**

Vishwas Chitale
Director
B.G. Chitale Dairies Pvt Ltd
Chitale Genus ABS (India) Pvt. Ltd.



In 2017, ABS India deployed Genus IntelliGen™ Technology in India and started first bovine semen sexing lab in the country at its Brahma Genetics Facility, Chitale Genus ABS (India) Private Limited, near Pune in Maharashtra.

With IntelliGen™, we are providing sexed genetics for breeds like Holstein, Jersey & indigenous breeds like Sahiwal, Red Sindhi, Gir, Haryana along with crossbreeds and Murrah, Mehsana, Jaffarabadi buffaloes for the first time. We are offering 21st Century technology which leads to more good quality heifers, higher profits, and therefore, a better and improved way of life for farmers.

The Genus IntelliGen™ Technology process to develop sexed bovine genetics that does not subject cells to the high pressures, electric currents and shear forces. The result is a product that helps customers maximize their profitability and reach their end goals in a fast and efficient manner.

ABS India has strengthened its genetic offering through ABS Neo – confirmed IVF sexed pregnancies to the dairy farmers through ABS's unique and proprietary media, processing and freezing techniques. ABS Neo is helping progressive dairy farmers in India to produce highest genetic merit heifers and enhancing productivity by fast tracking the genetic gain.

Sexcel

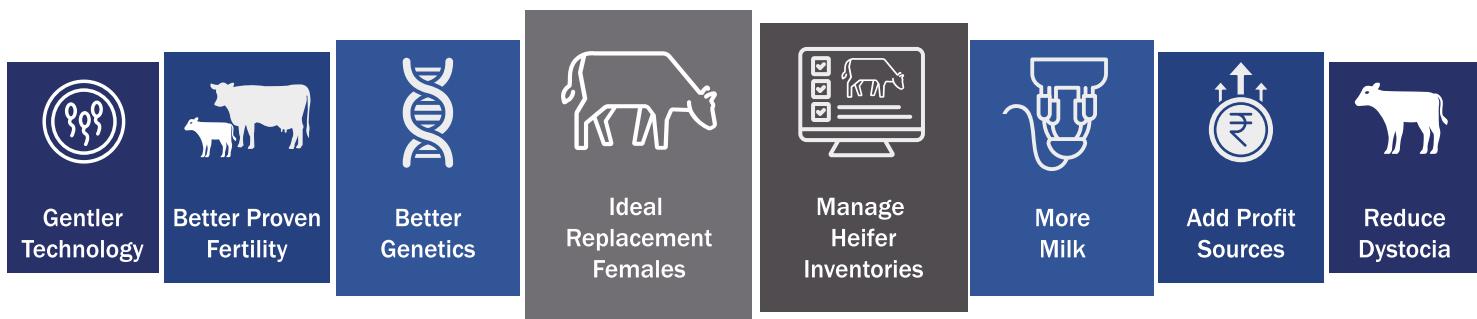
Sexed Genetics

India Production Facility

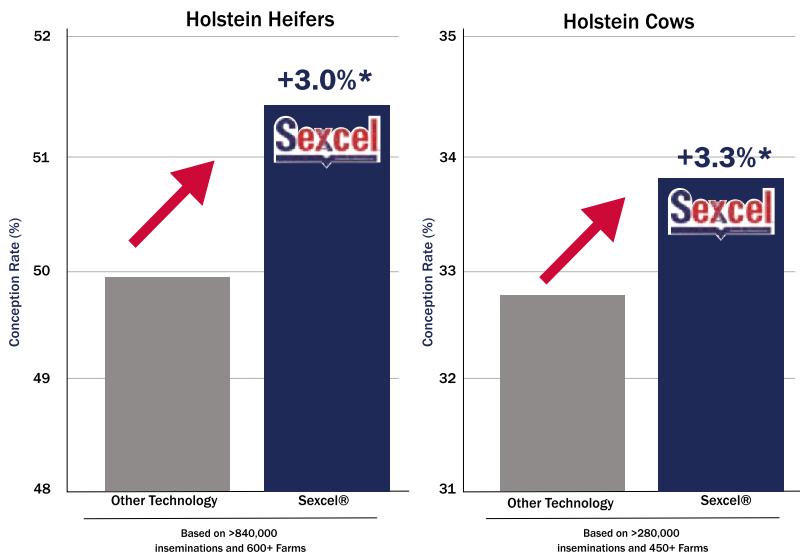
Brahma Dairy Genetics Facility,
Chitale Genus ABS (India) Pvt Ltd,
Sangli, Maharashtra

Other Production Facilities

Amul Research & Development Association,
Ode, Anand, Gujarat


Dudhsagar Research & Development Association,
Jagudhan, Mehsana, Gujarat

Gujarat Bovine Semen Sexing Institute,
Patan, Gujarat


One Result You Can Count On

To enhance product performance for our customers, we have combined the most profitable ABS genetics with superior fertility and the most innovative sexed semen technology. As the industry's best sexed genetics, Sexcel is the one result you can count on to get cows pregnant, fast forward genetic progress, produce ideal replacement heifers, and add additional profit opportunities. When you combine your best females with the best sexed genetics, you will see more production and higher, faster returns.

Sexcel® wins on fertility.

“

We wanted to have the opportunity to develop a global quality product for the sexed genetics and give the opportunity for producers and the dairy world to have genetic choice. It enables customers to achieve their unique objectives.

A unit of semen brings real value to a dairy farmer when it results in a cow pregnant with a female calf. A healthy heifer needs to be born and only then can genetic progress be seen. That's where the value is found. Optimise efficiency with Sexcel.

Jesus Martinez

Sr. Global Director

Intelligen Technologies

POWERED BY
IntelliGen
TECHNOLOGIES

1938

1941

Rockefeller (Rock) Prentice of Barrington, Illinois, forms the American DairyGuernsey Associates (ADGA) of Northern Illinois, the precursor to today's ABS Global. Three Guernsey sires form the core of an organization that would become the first privately owned bull stud in the USA.

1945

In 1945, Holstein sires, the most popular dairy breed sold globally today, join the ABS lineup and quickly make a name for themselves (and a name-change for us).

In 1945, ADGA of Northern Illinois changes its name to the American Scientific Breeding Institute to reflect a greater number of Holsteins than Guernseys.

Commercial bovine artificial insemination (AI) begins using fresh, quickly delivered semen. How quickly? Imagine small planes air-dropping parachutes of vessels containing semen to waiting technicians standing beside ground markers. Quite a picture, isn't it?

1956

In 1956, our researchers collaborate with Linde Corporation to introduce the industry's first container for storing and transporting frozen semen using liquid nitrogen.

The container was funded by the organization at a cost of \$770,000 and establishes us as the first organization in the USA to rely 100 percent on liquid nitrogen- refrigerated frozen semen. Peru becomes the first country to receive frozen semen outside of the USA.

In 1956, Dr. Basile Luyet joins the organization. This Catholic priest and prominent cryobiologist perfects the process for freezing and storing semen.

Remember the parachuting semen of 1938? In 1956, thanks to our new transport container, drivers can now deliver frozen semen via the first truck route in the Midwest.

1958

In 1958, our name is officially changed to American Breeders Service (ABS).

1959

In 1959, Rock Prentice has trouble finding accurate, accessible production records to improve genetic evaluations. He discovers the Department of Agriculture in Beltsville, Maryland, has the information he needs. The bad news: They lack funding to do anything with them. However, thanks to a generous donation from Rock Prentice, daughter records by bull and breed are published in the first AI sire summary.

1980

In 1980, our Reproductive Management System (RMS) manages herd reproduction by utilizing heat detection, artificial insemination, synchronization, and data management services provided by professional technicians.

1987

In 1987, ABS develops nuclear fusion transfer. This involves the cells of a cow's embryo being loosened and individually placed into donor cow eggs that had their own DNA content removed. Once paired, the two are fused together to create a cloned embryo. These embryos are transferred to surrogate cows to create cloned calves. The first two calves born from this technology were named Fusion and Copy. Seems appropriate!

2005

In 2005, the company officially geeks out as Computer Assisted Sperm Analysis (CASA) replaces the photographic tracking process for post-thaw semen checks.

Bovine, meet porcine. In 2005, Genus plc purchases Pig Improvement Company, the largest porcine genetics company in the world.

In 2005, ABS Global purchases land in Dekorra, Wis., USA, a township just north of DeForest. In 2007, a second headquarters facility is built with European-approved collection barns, an isolation barn, a rearing barn, and processing lab, as well as a state-of-the-art observation barn, arrival facility, calf facility, the Vern Meier Historical Barn, and a number of other ongoing projects.

2015

In 2015, ABS Global acquires In-Vitro Brazil (IVB), the world leader in commercial bovine IVF. In 2015, there's even more great news from Brazil as the company launches Y SYNC, an app that facilitates heat cycle synchronization in herds. The software is also used to monitor and collect information for the Fixed Time AI (FTAI) Beef Program. In 2015, ABS Global produces the first commercial units from our proprietary genomic bulls, each of which is born from our elite female nucleus herd. Olá novamente, Brasil. In 2015, GPLAN, a mating program for Girolando bulls, is released in Brazil. In 2015, ABS Global develops TransitionRight. In 2015, ABS Global launches ABS NEO, an embryo program powered by exclusive IVB Transfer™ technology. In 2015, the Ruthin Gallery, a viewing room, meeting room, and education center opens in the UK.

2006

Guten tag, Deutschland! In 2006, we begin business in Germany.

First Brazil, then the world. In 2006, ABS Global introduces the ABS Sexation™ product line globally after a successful introduction in Brazil.

2007

In 2007, the company creates Fertility Plus®, a semen fertility product that increases conception rate.

2008

In 2008, ABS Global begins genomic testing, analyzing DNA to estimate future performance more reliably and at an earlier age. Today, all sires in the ABS program are genomic tested.

2016

In 2016, ABS Global acquires St. Jacobs ABC, an elite dairy genetics supplier that has been providing ABS with prestigious genetics since 1990.

In 2016, the state-of-the-art Brahma Genetics Facility is opened near Pune, India, in joint venture with B.G. Chitale Dairy called as Chitale Genus ABS India Pvt Ltd. Chitale Genus ABS India imports 13 top of the line live bulls from the ABS Global USA to India.

Hooray, yippee, huzzah! In 2016, the company celebrates 75 exciting years of nonstop and unbeatable genetic progress.

In 2016, ABS Global and De-Su Holsteins form a joint venture, De Novo Genetics. The partnership develops elite and differentiated Holstein genetics to help increase customer profitability through improved herd productivity, health, and efficiency.

1948

In 1948, Rock Prentice and Dr. E.L. Willet establish the American Foundation of the Study of Genetics. A few years later, the foundation would create the first embryo transfer calf using a now-familiar process known today as – you guessed it – in vitro fertilization (IVF).

In 1963, ABS geneticist, Dr. Robert E. Walton, introduces the Estimated Daughter Superiority (EDS) measurement, a young sire program to progeny test sires in a truly random fashion. EDS determines the value of bulls old enough to have milking daughters, which lays the foundation for the genetic evaluations used everywhere today. Dr. Walton would go on to become the 2nd president of ABS.

1963

2009

In 2009, ABS Global makes history with the only stud to have nine "millionaire" sires, each of which has produced and sold more than one million units of semen.

In 2009, ABS China is founded.

2017

Sexcel ABS launches Sexcel, its sexed genetics using own 21st century, cutting edge Genus IntelliGen™ technology.

2018

ARSHI first calf from Made in India ABS Sexcel Sexed Semen Arshi means the first sun rays of a rising sun. It is also the name of the female calf born at farm at Saraswat Dairy Farm at Karab village in Mahavil tehsil Mathura, UP.

2020

ABS India imports 2nd batch of live five Holstein and one Jersey bulls from ABS Global, USA to India.

In 2020, daughter of ABS Pennymaker sire, named Jogan, grand champion of milking competition of 14th PDFA (Progressive Dairy Farmers Association) sets national milk record of 76.61 kg in a day.

1950

The company breaks into the beef market when it adds Angus sires to the lineup.

1953

In 1953, the first semen ampule to hold frozen semen is created. Made of glass, the ampule holds 1.2 cc of semen.

In 1953, the world meets Frosty, a healthy heifer and the first North American calf born from frozen semen artificial insemination. Thirty years later, history would be made again when the same semen successfully conceives another AI calf (clearly, frozen semen has a long, long shelf life).

1965

1965

In 1965, DeForest, Wis., USA, becomes ABS headquarters

1967

In 1967, the now infamous ABS Bullboard is erected along I-94 in DeForest. Since its inception, it has hosted thousands of punny messages.

In his later years, Rock Prentice considers several buyers for the company, eventually choosing W.R. Grace & Company in 1967.

1968

1968

1968

In 1968, ABS introduces the first computerized mating program, initially called Genetic Mating Service (GMS), which has made more than 68 million matings since its inception.

In 1968, ABS creates linear genetic evaluation systems that would later be adopted by the Holstein Association.

1971

In 1971, ABS opens for business in France.

1975

In 1975, the first Genetic Trait Summary is published in the USA. This first-of-its-kind dataset would become a valuable asset for mating cows with the GMS (which now stands for Genetic Management System) program.

1978

In 1978, ABS invents and introduces a monitor ampule placed with stored semen, improving quality control by ensuring semen is maintained at the proper temperature.

2002

G'day, Australia! In 2002, Genus plc buys ABS Australia, followed a few years later by its purchase of Riverina Artificial Breeders (RAB), the second largest semen production and progeny testing center in Australia.

2009

2011

In 2011, collections start in our Whenby, England, facility.

As part of the new Dairy InFocus program, in 2011, cows with a lower genetic ranking are bred to beef with the resulting calves sold at a premium. Top-performing cows are used to create dairy replacement heifers. Today, InFocus is recognized as the leading source for premium dairy beef feeder cattle.

2012

In 2012, ABS Global becomes the first company to use a proprietary database, Real World Data® (RWD)

Using RWD, in 2012 the company launches Sire Fertility, an index to measure a sire's semen fertility.

2011

2012

1998

1999

In 1999, Genus plc, a publicly traded company based in England, purchases ABS Global.

2000

In 2000, additives further our success as Powerstart™ silage additive enters the UK market.

2014

Understanding Sire Summaries

Managing a dairy farm is not always simple, but selecting the right genetics does not have to be difficult. There are many things to look at in terms of data when it comes to selecting genetics. Traits, indexes, components, fertility, and... What do they all mean and how do you use them within your dairy? At ABS, we are here to help you make your genetic selection a walk in the park. We're here to explain dairy trait terminology. Use this as a resource to help you better understand what each trait, index, or other selection factors describe. Then, use it to understand the meaning of the values given on a bull proof.

Today's U.S. dairy genetic evaluations are computed in April, August, and December by the Council on Dairy Cattle Breeding (CDCB), Holstein Association USA, and American Jersey Cattle Association. For Holstein and Jersey sires, evaluations are genomically enhanced and represent a blending of genomic data, pedigree information, and results from progeny.

Dr Dinesh Rawat
General Manager
Genus Breeding India Pvt. Ltd.

“

Genomics in the dairy industry throughout the world is developing at a rapid pace. Data is the key for fueling this genomic selection in dairy farming. Council on Dairy Cattle Breeding (CDCB) and Holstein Association USA gathers and reviews data of dairy cows from different farms, which forms basis of genetic evaluations and indexes. Sire summary provides you with these genetic evaluations in form of Predicted Transmitting Abilities (PTAs) for milk production, health, fertility and type traits of bull. PTA predicts or estimates what bull will pass on to its offspring. Understanding sire summaries helps you to make better breeding decisions, resulting in boosting herd's genetic potential and profitable dairy business.

”

OSCAR

Full registered name in US Holstein Breed Association

DENOVO 23667 OSCAR | NAAB CODE: 29HO22333 ; NDLM ID: CHI-HF-22333

NDLM ID is the unique ID of this bull, registered in national database of NDLM

Pedigree is the recorded ancestry/lineage of bull

ALTAFONSI x VENOM x MENDEL-P

NAAB Code is issued by National Association of Animal Breeders

It consists of registered full names of the Sire, Dam, Maternal Grand Sire (MGS), Maternal Grand Dam (MGD) and Maternal Great Grand Sire (MGGS) of a bull

PEDIGREE

Born: 10 Nov 2024

Sire: PEAK ALTAFONSI-ET

Bred By: DENOVO GENETICS, USA

Dam: DENOVO VENOM 4586-ET

Registry Status: 99% - I

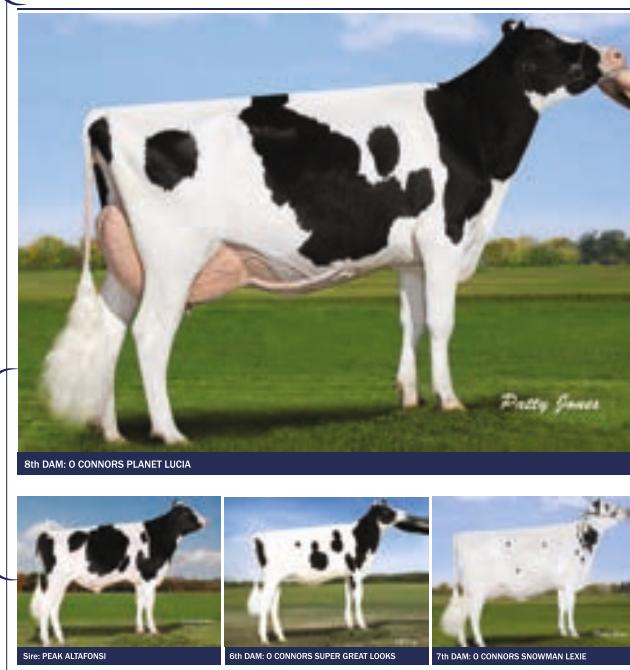
Percentage of registered Holstein ancestry in US Holstein breed association.

MGS: LEVEL-PLAIN VENOM-ET

Beta Casein: A1/A2

One of the caseins in milk protein. A2/A2 is the most ideal test result.

MGD: DENOVO MENDEL-P 5964-ET


Kappa Casein: AB

One of the caseins in milk protein. BB Kappa Casein is the most ideal genotype for cheese making and protein production.

MGGS: WINSTAR MENDEL-P-ET

CDCB: 08/2025

Indicates month and year of genetic evaluation by the Council on Dairy Cattle Breeding (CDCB) and Holstein Association USA.

Dairy Trait Symbols

Net Profit Genetics: Sire increases profitable production while reducing expenses

A2A2: Sire possesses A2A2 gene for beta casein

Sire breeds more efficient, profitable cows for increased income over feed cost

Calving Ease: Sire has superior calving ease based on actual observations

Heterozygous polled

Sire possesses BB gene for kappa casein, ideal for increasing cheese yield and protein content

Daughter Fertility: Sire whose daughters show improved fertility

High Type: Sire has high type traits and will produce offspring of superior conformation

Body Conformation Traits

Thurl Width: Distance between the pins, measured in inches.

Stature: Height at the hips.

Udder Height: Distance between the bottom of the vulva and the top of the milk secreting tissue, measured in inches.

Rump Angle: The slope from the hips to the pins, measured in inches.

Udder Width: The width of the rear udder where the udder attaches to the body, measured in inches.

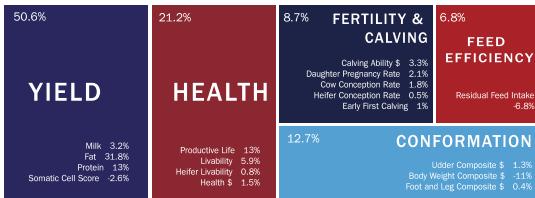
Udder Depth: The distance between the lowest point of the udder floor and the point of the hock, measured in inches.

Udder Cleft: Depth of cleft between the rear quarters, measured in inches, the trait has an intermediate optimum of 0, cleft stronger or weaker will be penalized.

Rear Legs Side-View: The angle of the set to the hock.

Rear Legs Rear-View: Evaluation of the rear legs ability to stand straight, wide apart with feet squarely placed.

Body Depth: Evaluation of depth of barrel.


Strength: Evaluation of strength and substance, including width of chest.

Dairy Form: Evaluation of openness and angularity.

Foot Angle: The angle the front of the toes makes with the ground.

Fore-Udder Attachment: Evaluation of the strength, length and capacity of the foreudder attachment.

Lifetime Net Merit \$ (NM\$) is the national selection index in the U.S. Net Merit predicts net profit over the lifetime of the animal's average daughter, expressed in U.S. dollars.

Total Performance Index (TPI)
An industry index created by Holstein Association USA with the goal to offer a balanced approach to selection for production, health, and conformation. It combines genetic proofs for production, type, longevity and fertility into a single value.

Predicted Transmitting Abilities (PTAs) are an estimate of genetic superiority (or inferiority) that a bull or cow will transmit to their offspring for a given trait. PTAs are calculated for several traits, including milk, fat, protein, productive life, and final score, and the numbers can be used to rank bulls and cows by their genetic merit.

Standard Transmitting Abilities (STAs) is a refined way of expressing genetic evaluations for linear-type traits, offering a clearer and standardized metric for comparison. Calculating STAs involves transforming Predicted Transmitting Abilities (PTAs) into a common scale, making disparate traits easily comparable.

Reliability is a measure of estimated accuracy of the PTA. Reliabilities show how much confidence can be placed in an evaluation.

Production Traits

PTA Milk of 814 pounds indicates that its future mature daughters are expected to produce 12,311 kg (814 lbs + 26328 lbs)/2.205) in each lactation

PTA Protein of 44 pounds indicates that its future mature daughters are expected to produce 411 kg (44 lbs + 863 lbs)/2.205) in each lactation.

PTA Fat of 82 pounds indicates that its future mature daughters are expected to produce 531 kg (82 lbs + 1088 lbs)/2.205) in each lactation.

Health Traits

Productive Life of 3.6 months predicts the time female offspring are expected to remain in milking herd before removal by culling or death.

Cow Livability of 1.8 percentage points predicts the difference in female offspring expected to remain alive while in the milking herd.

Somatic Cell Score is an indicator for mastitis resistance. Daughters with low SCS of 2.85 are expected to have higher mastitis resistance than daughters of bulls with high PTA for SCS.

Milking speed estimates how fast a cow milks, expressed in pounds per minute. Daughters of this sire are expected to milk 7.26 pounds faster in a minute than the average population.

It is the **milking temperament** of first lactation cows at milking time. Average=100. Daughters of this sire are expected to have slight nervous temperament while milking.

ABS Health Index: Composite index that includes mastitis, metritis, ketosis, displaced abomasum, hypocalcaemia, retained placenta, twinning rate and heifer survival. Average = 100. Daughters of this bull are estimated to have less health incidence listed above

Production

	NM\$	PTA
Milk	+814 Lbs	79% Rel
Protein	+44 Lbs	+0.06%
Fat	+82 Lbs	+0.18%
CM\$	+875	
GM\$	+856	
FM\$	+774	

Health & Fertility

Productive Life	+3.6	74% Rel
Livability	+1.8	71% Rel
Daughter Pregnancy Rate	+0.7	73% Rel
Somatic Cell Score	2.85	74% Rel
Heifer Conception Rate	+3.4	72% Rel
Cow Conception Rate	+2.6	73% Rel
Feed Saved	210	
Residual Feed Intake	-144	
Milking Speed	7.26	
Milking Temperament	97	
ABS Health Index	110	
Recessives	HH1T, HH2T, HH3T, HH4T, HH5T, HH6T, TC, TD, TE, TL, TN, TP, TR, TV, TY	

Calving Traits

Sire Calving Ease	1.5%	59% Rel
Daughter Calving Ease	1.7%	57% Rel
Sire Stillbirths	3.6%	55% Rel
Daughter Stillbirths	3.6%	55% Rel

Conformation

	-2	-1	0	+1	+2	PTAT Rel: 77%
PTA Type						0.30
Udder Composite						0.29
Feet & Legs Composite						0.04
Body-Weight Composite						-0.41
Stature						0.01 Tall
Strength						-0.22 Frail
Body Depth						-0.30 Shallow
Dairy Form						0.59 Open
Rump Angle						1.40 Sloped
Thurl Width						0.30 Wide
Rear Legs Side-View						-0.06 Straight
Rear Legs Rear-View						-0.03 Hock-In
Foot Angle						0.06 Steep
Feet & Legs Score						0.06 High
Fore-Udder Attachment						0.16 Strong
Udder Height						0.69 High
Udder Width						0.96 Wide
Udder Cleft						-0.58 Weak
Udder Depth						-0.20 Deep
Front Teat Placement						0.22 Close
Rear Teat Placement						-0.10 Wide
Teat Length						-0.67 Short

Predicted Transmitting Abilities (PTAs) are an estimate of genetic superiority (or inferiority) that a bull or cow will transmit to their offspring for a given trait. PTAs are calculated for several traits, including milk, fat, protein, productive life, and final score, and the numbers can be used to rank bulls and cows by their genetic merit.

Standard Transmitting Abilities (STAs) is a refined way of expressing genetic evaluations for linear-type traits, offering a clearer and standardized metric for comparison. Calculating STAs involves transforming Predicted Transmitting Abilities (PTAs) into a common scale, making disparate traits easily comparable.

Reliability is a measure of estimated accuracy of the PTA. Reliabilities show how much confidence can be placed in an evaluation.

Economic Selection Indexes

Lifetime Cheese Merit \$ (CM\$) is designed for herds that sell milk for cheese, using cheese yield pricing. It has more emphasis on Protein Pounds because protein has more value in the cheese market.

Lifetime Grazing Merit \$ (GM\$) was created for pasture-based herds using intensive grazing. As grazing herds often calve seasonally, more emphasis is given on fertility and feed efficiency traits.

Lifetime Fluid Merit \$ (FMS) fits farms that sell into the fluid milk market. There is considerably more weight on PTA Milk.

Fertility Traits

Daughter Pregnancy Rate: Percentage of non-pregnant cows that become pregnant during each 21-day period. A DPR of +0.7% implies daughters from this bull will on average 3 fewer days open in their lactation.

Heifer Conception Rate: Percentage of inseminated heifers that become pregnant at each service. Maiden heifers of this sire are expected to transmit 59.5% (56.1 (US Holstein Breed Mean) + 3.4 = 59.5) of conception rate in there each insemination.

Cow Conception Rate: Percentage of inseminated cows that become pregnant at each service. Mature cows of this sire are expected to transmit 44.5% (41.9 (US Holstein Breed Mean) + 2.6 = 44.5) of conception rate in there each insemination.

Feed Efficiency Traits

Feed Saved: It is the expected pounds of feed saved per lactation. Based on production and body size, daughters are expected to consume 210 pounds (i.e., 95 kg) less dry matter in its entire lactation.

Residual Feed Intake: Daughters of this sire are expected to consume actually -144 pounds (i.e., 65 kg) of less dry matter than its expectation in per lactation.

SCE: It is the percentage of difficult births expected in first calf heifers.

DCE: It is the percentage of difficult births expected for daughters sired by the bull.

SSB: Percentage of stillborn calves expected for a sire.

DSB: Percentage of stillborn calves expected for a sire's daughters.

PTA Type: 0.30 The difference in final score classification points compared to the base population.

Udder Composite: 0.29 A composite index that incorporates fore and rear attachments, udder depth, cleft, teat placement, and stature.

Feet & Legs Composite: 0.04 A composite index based on rear legs-rear view, foot angle, feet and legs score, and stature.

Body-Weight Composite: -0.41 A composite index that incorporates strength, body depth, rump width, dairy form and positive stature.

Feet & Legs Score: 0.06 Classification score based on the cumulative evaluation of feet and leg traits including evidence of mobility.

Front Teat Placement: 0.22 The position of the rear teat from the centre of quarter, as viewed from rear

Rear Teat Placement: 0.10 The position of the rear teat from the centre of quarter

Teat Length: -0.67 The length of the longest teat, measured in inches. For Holsteins, 0 represents the average teat length of 2.4 inches. -3 represents the teat length of 2.2 inches, and +3 represents the teat length of 2.6 inches.

"Recessives" are the variants that are only expressed when the individual carries two copies of the gene. These will only occur when a mating has taken place between two parents that are either affected or carriers of the variant.

HH1, HH2, HH3, HH4, HH5, HH6 Holstein haplotypes affecting fertility
TC Tested free of Cholesterol Deficiency
TD Tested free of DUMPS
TE Tested free of Early Onset Muscle Weakness Syndrome
TL Tested free of BLAD
PC Tested heterozygous polled
TP Tested free of the polled condition (horned)
TR Tested free of red hair colour
TV Tested free of CVM
TY Tested free of Brachyspina

Sire selection is important for breeding functional cows, that are productive, efficient, and last-longer. What should a dairy cow look like? Does it fit our dairy operation? For many years, dairy breeders were driven by the belief that large and taller cows are more productive and ideal. As cows grew taller, unexpected consequences emerged. Larger cows consume more feed and often experienced strain on skeletal structures and faced incidences of lameness. In times of increasing feed and labour costs, breeders and farmers should focus on more balanced body structured cows, which are feed efficient and productive.

Dr Rahul Gupta
Head of Operations
Genus Breeding India Pvt. Ltd.

OSCAR

DENOVO 23667 OSCAR

| NAAB CODE: 29H022333 ; NDLM ID: CHI-HF-22333

ALTAFONSI × VENOM × MENDEL-P

PEDIGREE

Sire: PEAK ALTAFONSI-ET

Dam: DENOVO VENOM 4586-ET

MGS: LEVEL-PLAIN VENOM-ET

MGD: DENOVO MENDEL-P 5964-ET

MGGS: WINSTAR MENDEL-P-ET

Born: 10 Nov 2024

Bred By: DENOVO GENETICS, USA

Registry Status: 99% - I

Beta Casein: A1/A2

Kappa Casein: AB

CDCB: 08/2025


8th DAM: O CONNORS PLANET LUCIA

Sire: PEAK ALTAFONSI-ET

6th DAM: O CONNORS SUPER GREAT LOOKS

7th DAM: O CONNORS SNOWMAN LEXIE

**NM\$
+844****CM\$
+875****FM\$
+774**

Production		NM\$: +844 TPI®: +3261			
Milk	+814 Lbs	79% Rel			
Protein	+44 Lbs	+0.06%			
Fat	+82 Lbs	+0.18%			
CM\$	+875				
GM\$	+856				
FM\$	+774				
Health & Fertility					
Productive Life	+3.6	74% Rel			
Livability	+1.8	71% Rel			
Daughter Pregnancy Rate	+0.7	73% Rel			
Somatic Cell Score	2.85	74% Rel			
Heifer Conception Rate	+3.4	72% Rel			
Cow Conception Rate	+2.6	73% Rel			
Feed Saved	210				
Residual Feed Intake	-144				
Milking Speed	7.26				
Milking Temperament	97				
ABS Health Index	110				
Recessives	HH1T, HH2T, HH3T, HH4T, HH5T, HH6T, TC, TD, TE, TL, TN, TP, TR, TV, TY				
Calving Traits					
Sire Calving Ease	1.5%	59% Rel			
Daughter Calving Ease	1.7%	57% Rel			
Sire Stillbirths	3.6%	55% Rel			
Daughter Stillbirths	3.6%	55% Rel			
Conformation					
PTAT Rel: 77%					
	-2	-1	0	+1	+2
PTA Type			■		0.30
Udder Composite			■		0.29
Feet & Legs Composite			■		0.04
Body-Weight Composite		■			-0.41
Stature					0.01 Tall
Strength		■			-0.22 Frail
Body Depth		■			-0.30 Shallow
Dairy Form			■		0.59 Open
Rump Angle			■■■		1.40 Sloped
Thurl Width		■			0.30 Wide
Rear Legs Side-View		■			-0.06 Straight
Rear Legs Rear-View					-0.03 Hock-In
Foot Angle		■			0.06 Steep
Feet & Legs Score		■			0.06 High
Fore-Udder Attachment		■			0.16 Strong
Udder Height			■■		0.69 High
Udder Width			■■		0.96 Wide
Udder Cleft		■			-0.58 Weak
Udder Depth		■			-0.20 Deep
Front Teat Placement		■			0.22 Close
Rear Teat Placement		■			-0.10 Wide
Teat Length		■			-0.67 Short

Best Genomic Holstein Bull of India

To improve milk production, efficiency and durability of your future herd

1. Breed for Profitable Herd with High TPI Sire

Higher TPI Sire of +3261 will genetically advance entire genetic pool of its future daughters, resulting in higher profit from gain in milk components, extra productive period, better feed efficiency, ease in calving and by having more functional dairy cows.

2. Son of Unique and High (>3100) TPI Ranked Parents

Sire PEAK ALTAFONSI-ET has been evaluated and is listed in various genomic bull databases around the world.

Dam DENOVO VENOM 4586-ET is listed in High Ranking TPI Genomic Females list of Feb, 2023 of Holstein USA breed

3. High PTA Milk and Fat

Daughters of the OSCAR bull are expected to produce 12,311 kg of milk (corresponding to +814 lbs PTA Milk), and with 4.2% milk fat (corresponding to +0.18% PTA Fat%) and +82 lbs PTA Fat), yield about 531 kg of milk fat over their entire lactation.

4. Extra Profit from Extra Productive Life of 3.6 months

OSCAR's future daughters will be producing for additional 3.6 months than average productive life of US Holstein breed.

5. Improve Conception Rates Genetically.

PTAs of HCR 3.4 and CCR 2.6 will improve conception rates of breeding heifers as well as adult cows by given percentage after their (first) breeding.

6. Improve Milking Speed with PTA MSPD

With a strong PTA for milking speed, daughters of this bull are expected to be faster milkers than the average Holstein cow, allowing them to release milk more efficiently and yield higher milk output, thereby improving labour efficiency and overall parlour performance.

7. Breed for Feed Efficiency

PTA Feed Saved: +210 Pounds. Based on production and body size, daughters are expected to consume 210 pounds (i.e., 95 kg) less dry matter in its entire lactation, with average management conditions using a conventional milking system.

8. Lower Difficult Births from Desirable PTAs of Calving Ease and Stillbirths

OSCAR's PTA SCE of 1.5% and PTA DCE of 1.7% indicates that, its future mature daughters will be calving more easily, without difficulty, and without any assistance.

9. Other Body Conformation Traits

STA Dairy Form: 0.59 Open:Open Dairy Formed Cows. It tells about angularity of ribs, which indicates milkability.

STA Rump Angle: 1.40 Sloped: Do you have any cow with good production but have very high pins? Selecting bull with sloped pins will produce daughters with bit ideal pins.

STA Udder Height & Width: 0.69 High & 0.96 Wide: Higher & wider udders are better. It allows more room for rear udder quarters & better suspension for udder, supporting greater milk production.

Efficient Genetics for Productive Herd

Scan QR Code

Book your online order now through
ABS Direct

STORM-P

TERRA-LINDA ABS STORM-P-ET | NAAB CODE: 29H022381 ; NDLM ID: CHI-HF-22381

CALEB-P × OVERDO × ALTAZAZZLE

PEDIGREE

Sire: DENOVO 2476 CALEB-P-ET
Dam: TERRA-LINDA OVERDO 11788-ET
MGS: LADYS-MANOR OVERDO-ET
MGD: TERRA-LINDA ZAZZLE DIXIE-ET
MGGS: PEAK ALTAZAZZLE-ET

Born: 13 Nov 2024

Bred By: DENOVO GENETICS, USA

Registry Status: 99% - I

Beta Casein: A1/A2

Kappa Casein: AB

CDCB: 08/2025



Beth Hedges

4th DAM: VANDEN-BRIDGE FRAZLED 826-ET

MGS: LADYS-MANOR OVERDO-ET

MGD: TERRA-LINDA ZAZZLE DIXIE-ET

MGGD: DANHOF RENEGADE DORA-ET

**NM\$
+689****CM\$
+713****FM\$
+634****Production**

NM\$: +689 TPI®: +3180

Milk	+735 Lbs	79% Rel
Protein	+37 Lbs	+0.05%
Fat	+69 Lbs	+0.14%
CM\$	+713	
GM\$	+690	
FM\$	+634	

Health & Fertility

Productive Life	+3.4	74% Rel
Livability	+0.6	71% Rel
Daughter Pregnancy Rate	+0.5	73% Rel
Somatic Cell Score	2.85	75% Rel
Heifer Conception Rate	+2.1	71% Rel
Cow Conception Rate	+1.8	73% Rel
Feed Saved	98	
Residual Feed Intake	87	
Milking Speed	6.97	
Milking Temperament	95	
ABS Health Index	105	
Recessives	HH1T, HH2T, HH3T, HH4T, HH5T, HH6T, PC, TC, TD, TE, TL, TN, TR, TV, TY	

Calving Traits

Sire Calving Ease	1.4%	60% Rel
Daughter Calving Ease	1.8%	57% Rel
Sire Stillbirths	3.6%	56% Rel
Daughter Stillbirths	3.5%	55% Rel

Conformation

PTAT Rel: 77%

Best Genomic Polled Holstein Bull of India

To improve milk production and body conformation of your future herd

1. Breed for Profitable Herd with High TPI Sire

STORM-P have high TPI of +3180. Genetically improve total performance of your future herd and stay profitable.

2. Try Power of Polled!

Progeny of the STORM-P bull will be naturally polled (born without horns), eliminating the need for dehorning. This reduces stress, pain, and handling risks for animals, improves animal welfare, saves labour and management costs for farmers, and enhances overall farm safety.

3. Son of Unique and High (>3000) TPI Ranked Parents**4. Desirable Production Traits**

Daughters of the STORM-P bull are expected to produce 12,276 kg of milk (corresponding to +735 lbs PTA Milk), and with 4.1% milk fat (corresponding to +0.14% PTA Fat% and +69 lbs PTA Fat), yield about 525 kg of milk fat over their entire lactation.

5. Extra Profit from Extra Productive Life of 3.4 months

It's future daughters will be producing for additional 3.4 months than average productive life of US Holstein breed.

6. Improve Conception Rates Genetically.

PTAs of HCR 2.1 and CCR 1.8 will improve conception rates of breeding heifers as well as adult cows by given percentage after their (first) breeding.

7. Lower Difficult Births from Desirable PTAs of Calving Ease and Stillbirths

STORM-P's PTA SCE of 1.4% and PTA DCE of 1.8% indicates that, its future mature daughters will be calving more easily and without difficulty.

8. Outstanding Type, Udder, Feet and Legs

It results into more functional dairy cows, that live longer and produce more in herd.

PTA Type of 0.72, PTA UDC of 0.75 and PTA FLC of 0.62 indicates, future daughters will be having overall better body conformation, well-formed and structured udders and strong feet and legs for better mobility. It is recommended for herds focusing on selling genetics for added value of show ring appearance.

9. Smaller Cows for Better Efficiency and Management

PTA BWC of -1.14 will create smaller body sized cows. Smaller cows are easy to manage, consumes less feed but produces satisfactorily.

10. Other Body Conformation Traits

STA Dairy Form: 1.18 Open: Open Dairy Formed Cows. It tells about angularity of ribs, which indicates milkability.

STA Rump Angle: -0.94 High Pins: Do you have any cow with good production but have very sloped pins? Selecting bull with sloped pins will produce daughters with bit ideal pins.

STA Udder Width: 1.07 Wide: Wide udders are better. It allows better suspension for udder, supporting greater milk production.

Polled Genetics for Better Management

Scan QR Code

**Book your online order now through
ABS Direct**



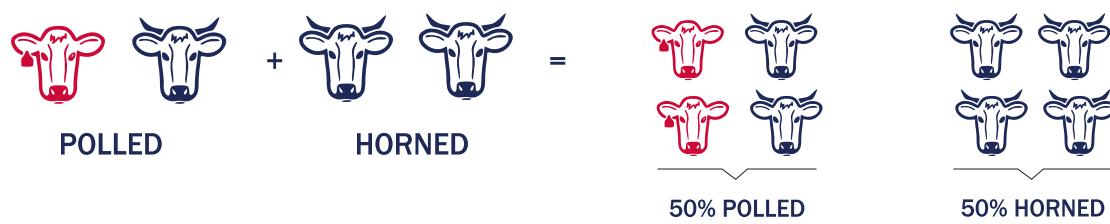
The Power of Polled

Horned cattle are more prevalent in the global dairy population because few producers are choosing to select genetics for polled cattle. Genetic selection for production, health, and conformation traits have historically trumped the selection of polled genetics. It was kind of one or the other—but not anymore! Times are changing as the desire to create polled cattle increases. Public awareness of dehorning practices is a main driver in recent polled genetic selections. Naturally hornless cattle appeal to off-farm consumers from an animal welfare perspective, but as a producer, eliminating dehorning promotes calf welfare, reduces management practices and increases safety for those working on dairies.

Your Polled Solution: STORM-P

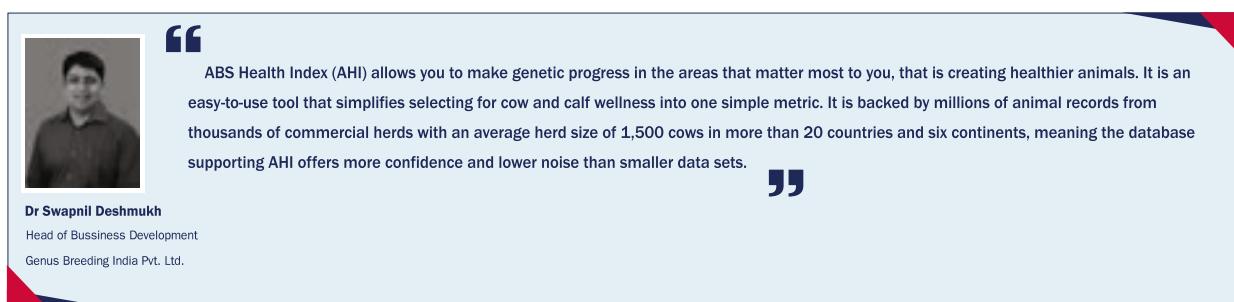
4th DAM: VANDEN-BRIDGE FRAZLED 826-ET

“


Polled genetics promotes calf welfare by eliminating dehorning stress, potential injury to calves, reduces management practices by labour savings, reduces costs associated with dehorning, improves animal care and safety.

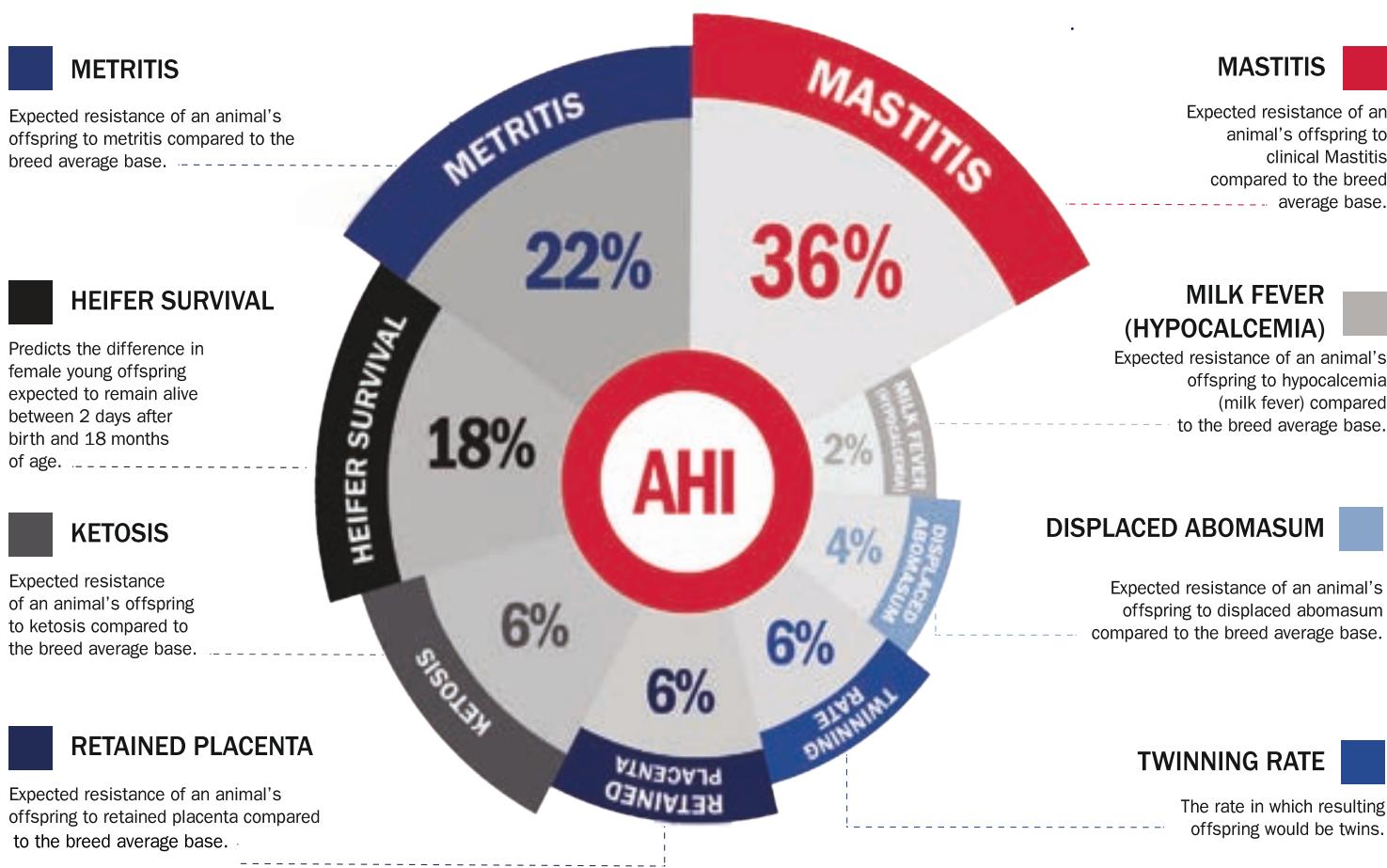
”

Dr Parikshit Deshmukh
Head of Sales and Technical Services
Genus Breeding India Pvt. Ltd.


Polled: The Dominant Gene

Most do not realize the polled gene is dominant. In simple terms, animals with one copy of the polled gene and one copy of the horned gene will not have horns. The illustration below demonstrates the breeding outcomes of using heterozygous polled bulls. It is important to note that if you are working towards a polled herd, you can use a heterozygous polled (Pp) sire with 50% of the resulting calves being polled. This means you can create a naturally hornless animal in one generation. Because the polled gene is dominant, this allows us to create polled animals faster than if the gene were recessive.

As a dairy producer, you have a lot of things on your mind, including the health of your animals. Health plays a crucial role in your success and sustainability. We understand that many factors influence the health of an animal, including genetics. Today, you can analyze several disease-related traits that predict the animal's susceptibility.


With all the unique traits, making a sound decision can be confusing and overwhelming. Therefore, ABS developed a tool for producers to use to simplify selection for health in their genetic plan. The ABS Health Index (AHI) combines eight related health events into a single simple metric based on overall impact. Unlike other health and wellness indexes, we give you the flexibility through a Custom Index to control the amount of emphasis you desire for health traits in your genetic plan. Take a deeper look into AHI below.

THE TEAM BEHIND AHI

Our team who works with our data and publishes the ABS Health Index has more than 50 years of genetic experience and have previously worked at globally renowned evaluation centers like USDA, CDCB, Canada Dairy Network (CDN), and the Irish Cattle Breeding Federation.

DISEASE-RELATED TRAITS EVALUATED IN THE ABS HEALTH INDEX

MAVERICK

DENOVO 23759 MAVERICK-ET | NAAB CODE: 29H022408; NDLM ID: CHI-HF-22408

NITROUS × HARVEY × VERDI

PEDIGREE

Sire: AURORA NITROUS-ET
Dam: DENOVO HARVEY 4440-ET
MGS: WILRA HARVEY-ET
MGD: DENOVO VERDI 11542-ET
MGGS: LEVEL-PLAIN DENOVO VERDI-ET

Born: 05 Dec 2024

Bred By: DENOVO GENETICS, USA

Registry Status: 99% - I

Beta Casein: A2/A2

Kappa Casein: AA

CDCB: 08/2025

REVERSED
Beth Hedges

4th DAM: DE-SU FRAZZLED 6984-ET

Sire: AURORA NITROUS-ET

5th DAM: DE-SU DELTA 4900-ET

6th DAM: DE-SU SUPERSIRE 3349-ET

NM\$ CM\$ FM\$
+689 +711 +639

Production		NM\$: +689 TPI®: +3141				
Milk	+631 Lbs	79% Rel				
Protein	+33 Lbs	+0.05%				
Fat	+65 Lbs	+0.14%				
CM\$	+711					
GM\$	+716					
FM\$	+639					
Health & Fertility						
Productive Life	+3.8	74% Rel				
Livability	+0.6	71% Rel				
Daughter Pregnancy Rate	+1.4	74% Rel				
Somatic Cell Score	2.89	75% Rel				
Heifer Conception Rate	+2.5	72% Rel				
Cow Conception Rate	+3.9	74% Rel				
Feed Saved	119					
Residual Feed Intake	72					
Milking Speed	6.97					
Milking Temperament	97					
ABS Health Index	104					
Recessives	HH1T, HH2T, HH3T, HH4T, HH5T, HH6T, TC, TD, TE, TL, TN, TP, TR, TV, TY					
Calving Traits						
Sire Calving Ease	1.1%	62% Rel				
Daughter Calving Ease	1.1%	57% Rel				
Sire Stillbirths	3.8%	59% Rel				
Daughter Stillbirths	3.4%	55% Rel				
Conformation						
PTAT Rel: 77%						
	-2	-1	0	+1	+2	
PTA Type						0.05
Udder Composite						0.48
Feet & Legs Composite						0.24
Body-Weight Composite						-1.18
Stature						-0.67 Short
Strength						-0.88 Frail
Body Depth						-0.94 Shallow
Dairy Form						0.39 Open
Rump Angle						0.30 Sloped
Thurl Width						-0.80 Narrow
Rear Legs Side-View						0.33 Curved
Rear Legs Rear-View						-0.19 Hock-In
Foot Angle						-0.14 Low
Feet & Legs Score						0.18 High
Fore-Udder Attachment						0.24 Strong
Udder Height						0.48 High
Udder Width						0.52 Wide
Udder Cleft						0.02 Strong
Udder Depth						0.09 Shallow
Front Teat Placement						0.92 Close
Rear Teat Placement						0.72 Close
Teat Length						-1.02 Short

One of the Best Genomic Holstein Bull of India

To improve milk production and fertility of your future herd

1. Breed for Profitable Herd with High TPI Sire

Dairy farmers breeding their cows using TPI will be breeding a profitable herd. Higher TPI Sire of +3141 will genetically advance entire genetic pool of its future daughters from gain in milk components, extra productive period, better feed efficiency, ease in calving and by having more functional dairy cows.

2. Son of Unique and High (>3100) TPI Ranked Parents

3. High PTA Milk and Fat

Daughters of the MAVERICK bull are expected to produce 12,228 kg of milk (corresponding to +631 lbs PTA Milk), and with 4.1% milk fat (corresponding to +0.14% PTA Fat% and +65 lbs PTA Fat), yield about 523 kg of milk fat over their entire lactation.

4. Daughters of the MAVERICK bull are expected to produce A2 milk.

5. Extra Profit from Extra Productive Life of 3.8 months

MAVERICK's future daughters will be producing for additional 3.8 months than average productive life of US Holstein breed.

6. Outstanding Fertility Traits to Select

PTA DPR of +1.4%, PTA HCR of +2.5% and PTA CCR of +3.9% will definitely improve abilities of breeding heifers as well as adult cows to conceive and get pregnant easily.

7. Breed for Feed Efficiency

PTA Feed Saved: +119 Pounds. Based on production and body size, daughters are expected to consume 119 pounds (i.e., 54 kg) less dry matter in its entire lactation, with average management conditions using a conventional milking system.

8. Lower Difficult Births from Desirable PTAs of Calving Ease and Stillbirths.

PTA SCE of 1.1% and PTA DCE of 1.1% indicates that, its future mature daughters will be calving more easily and without difficulty.

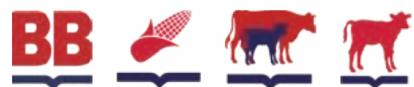
9. Smaller Cows for Better Efficiency and Management

PTA BWC of -1.18 will create smaller body sized cows. Smaller cows are easy to manage, consumes less feed but produces satisfactorily.

10. Body Conformation Traits:

PTA Front and Rear Teat Placement: 0.92 Close & 0.72 Close: Ideal teat placement should be positioned centrally under each quarter. It helps in normal milking processes. Extremely wide or close placement is undesirable. If they are placed wide enough, consider adding this sire in your breeding goal.

Fertility Improving Genetics for Higher Profit


Book your online order now through
ABS Direct

Scan QR Code

HUNTER

DENOVO 23703 HUNTER-ET | NAAB CODE: 29H022339 ; NDLM ID: CHI-HF-22339

FRITZLAN × HUBERT × MOONSHINER

PEDIGREE

Sire: LARS-ACRES SSI FRITZLAN-ET

Dam: DENOVO HUBERT 6776-ET

MGS: PLAIN-KNOLL HUBERT-ET

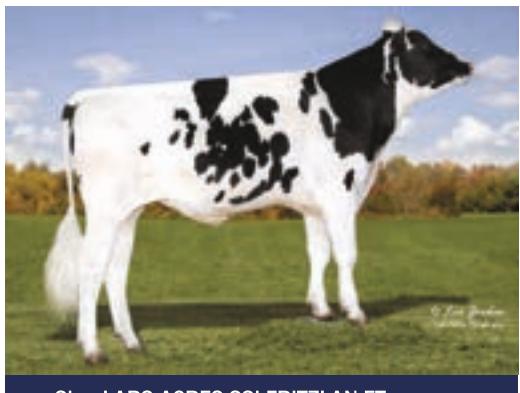
MGD: CHERRYPENCOL MOON 5994-ET

MGGS: FLY-HIGHER MOONSHINER-ET

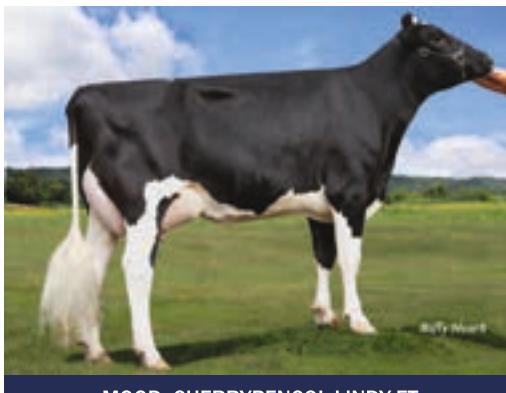
Born: 20 Nov 2024

Bred By: DENOVO GENETICS, USA

Registry Status: 99% - I


Beta Casein: A1/A2

Kappa Casein: BB


CDCB: 08/2025


5th DAM: MS TCF CHERRY-ACRES LORI-ET

Sire: LARS-ACRES SSI FRITZLAN-ET

MGD: CHERRYPENCOL LINDY-ET

4th DAM: CHERRY-ACRES JEDI LAURI-ET

**NM\$
+708****CM\$
+736****FM\$
+646**

Production		NM\$: +708 TPI®: +3107
Milk	+429 Lbs	79% Rel
Protein	+30 Lbs	+0.06%
Fat	+55 Lbs	+0.14%
CM\$	+736	
GM\$	+728	
FM\$	+646	

Health & Fertility		
Productive Life	+4.1	74% Rel
Livability	+0.5	71% Rel
Daughter Pregnancy Rate	+1.1	73% Rel
Somatic Cell Score	2.83	75% Rel
Heifer Conception Rate	+0.4	72% Rel
Cow Conception Rate	+2.3	73% Rel
Feed Saved	353	
Residual Feed Intake	-116	
Milking Speed	6.82	
Milking Temperament	98	
ABS Health Index	113	
Recessives	HH1T, HH2T, HH3T, HH4T, HH5T, HH6T, TC, TD, TE, TL, TN, TP, TR, TV, TY	

Calving Traits		
Sire Calving Ease	1.2%	63% Rel
Daughter Calving Ease	1.5%	57% Rel
Sire Stillbirths	3.4%	59% Rel
Daughter Stillbirths	3.4%	55% Rel

Conformation					PTAT Rel: 77%
	-2	-1	0	+1	+2
PTA Type			█		0.43
Udder Composite			█		0.87
Feet & Legs Composite		█			0.13
Body-Weight Composite	█				-1.46
Stature		█			-0.55 Short
Strength	█				-1.24 Frail
Body Depth	█				-0.87 Shallow
Dairy Form		█			0.84 Open
Rump Angle	█				-0.29 High Pins
Thurl Width		█			0.15 Wide
Rear Legs Side-View		█			-0.05 Straight
Rear Legs Rear-View	█				-0.37 Hock-In
Foot Angle		█			-0.18 Low
Feet & Legs Score		█			0.12 High
Fore-Udder Attachment		█			0.64 Strong
Udder Height		█			0.78 High
Udder Width		█			0.87 Wide
Udder Cleft		█			0.72 Strong
Udder Depth		█			0.53 Shallow
Front Teat Placement		█			1.13 Close
Rear Teat Placement		█			1.32 Close
Teat Length	█				-1.06 Short

One of the Best Genomic Holstein Bull of India

To improve milk production, feed efficiency and udder of your future herd

1. Breed for Profitable Herd with High TPI Sire

HUNTER have high TPI of +3107. It will genetically advance entire genetic pool its future daughters and result into profitable herd.

2. Son of Unique and High (>3000) TPI Ranked Parents

Sire LARS-ACRES SSI FRITZLAN-ET, having TPI +3063, is listed in USA Top Ranking GTPI Bulls with NAAB -Code list of EuroGenes December 2023.

3. Satisfying PTA Milk and Fat

Daughters of the HUNTER bull are expected to produce 12,137 kg of milk (corresponding to +429 lbs PTA Milk), and with 4.1% milk fat (corresponding to +0.14% PTA Fat% and +55 lbs PTA Fat), yield about 518 kg of milk fat over their entire lactation.

4. Profit from Long Productive Life of 4.1 months

Daughters of HUNTER will be producing for additional 4.1 months than average productive life of US Holstein breed.

5. Improve Fertility Genetically.

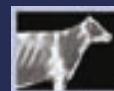
PTA DPR of +1.1% and PTA CCR of +2.3% will improve pregnancy and conception rates of adult cows by given percentage after their (first) breeding.

6. Breed for Feed Efficiency

PTA Feed Saved: +353 Pounds. Based on production and body size, daughters are expected to consume 353 pounds (i.e., 160 kg) less dry matter in its entire lactation, with average management conditions using a conventional milking system.

7. Lower Difficult Births from Desirable PTAs of Calving Ease and Stillbirths

HUNTER's PTA SCE of 1.2% and PTA DCE of 1.5% indicates that, its future mature daughters will be calving more easily and without any assistance.


8. Amazing Udder Improving Abilities

PTA UDC of 0.87 indicates amazing transmitting ability of well-formed and structured udders. Udder structure is important for high producing dairy cow to produce efficiently, for longer time and prevent udder related diseases.

9. Smaller Cows for Better Efficiency and Management

PTA BWC of -1.46 will create smaller body sized cows. Smaller cows are easy to manage, consumes less feed but produces satisfactorily.

10. Other Body Conformation Traits

STA Dairy Form: 0.84 Open:

Open Dairy Formed Cows. It tells about angularity of ribs, which indicates milkability.

STA Udder Height & Width: 0.78 High & 0.87 Wide:

Higher & wider udders are better. It allows more room for rear udder quarters & better suspension for udder, supporting greater milk production.

STA Front & Rear Teat Placement: 1.13 & 1.32 Close

It is the distances between the teats in inches. Proper placement helps in normal milking processes.

Efficient Genetics for Sustainability

Scan QR Code

Book your online order now through
ABS Direct

MILLENIUM

DENOVO 21893 MILLENIUM-ET | NAAB CODE: 29H022404; NDLM ID: CHI-HF-22404

REALITY*RC× HERCULES × SHIMMER*RC

PEDIGREE

Sire: DENOVO 80141 REALITY-ET
Dam: DENOVO HERCULES 14124-ET
MGS: DENOVO 16429 HERCULES-ET
MGD: DENOVO SHIMMER 1991-ET
MGGS: SCHREUR SHIMMER-ET

Born: 28 Nov 2024

Bred By: DENOVO GENETICS, USA

Registry Status: 99% - I

Beta Casein: A1/A2

Kappa Casein: BB

CDCB: 08/2025



Beth Hedges

4th DAM: SEAGULL BAY D EXTREME-ET

Sire DENOVO 80141 REALITY-ET

6th DAM: SEAGULL BAY MISS AMERICA-ET

7th DAM: AMMON-PEACHY SHAUNA-ET

NM\$
+549**CM\$**
+563**FM\$**
+518

Production		NM\$: +549 TPI®: +3058
Milk	+606 Lbs	79% Rel
Protein	+27 Lbs	+0.03%
Fat	+54 Lbs	+0.11%
CM\$	+563	
GM\$	+545	
FM\$	+518	

Health & Fertility		
Productive Life	+2.9	74% Rel
Livability	+2.0	71% Rel
Daughter Pregnancy Rate	+0.7	74% Rel
Somatic Cell Score	2.95	75% Rel
Heifer Conception Rate	+1.8	72% Rel
Cow Conception Rate	+1.6	73% Rel
Feed Saved	45	
Residual Feed Intake	3	
Milking Speed	7.20	
Milking Temperament	100	
ABS Health Index	99	
Recessives	HH1T, HH2T, HH3T, HH4T, HH5T, HH6T, TC, TD, TE, TL, TN, TP, TR, TV, TY	

Calving Traits		
Sire Calving Ease	1.3%	62% Rel
Daughter Calving Ease	1.8%	58% Rel
Sire Stillbirths	3.6%	57% Rel
Daughter Stillbirths	3.6%	56% Rel

Conformation					PTAT Rel: 77%
	-2	-1	0	+1	+2
PTA Type				█	0.83
Udder Composite				█	0.88
Feet & Legs Composite			█		1.06
Body-Weight Composite		█			-0.30
Stature			█		0.05 Tall
Strength			█		-0.13 Frail
Body Depth			█		-0.04 Shallow
Dairy Form			█		0.39 Open
Rump Angle			█		0.17 Sloped
Thurl Width		█			-0.17 Narrow
Rear Legs Side-View		█			-0.23 Straight
Rear Legs Rear-View			█		0.72 Straight
Foot Angle			█		0.66 Steep
Feet & Legs Score			█		1.10 High
Fore-Udder Attachment			█		0.88 Strong
Udder Height			█		1.35 High
Udder Width			█		0.86 Wide
Udder Cleft		█			-0.13 Weak
Udder Depth			█		1.05 Shallow
Front Teat Placement		█			-0.20 Wide
Rear Teat Placement		█			-0.48 Wide
Teat Length		█			-0.34 Short

#One of the Best Genomic Holstein Bull of India

To improve milk production, durability and dairy body conformation of your future herd

1. Breed for Profitable Herd with High TPI Sire

Higher TPI Sire of +3058 will genetically advance entire genetic pool of its future daughters.

2. Son of Unique and High (>3000) TPI Ranked Parents

3. Desirable PTA Milk and Fat

Daughters of the MILLENIUM bull are expected to produce 12,217 kg of milk (corresponding to +606 lbs PTA Milk), and with 4.1% milk fat (corresponding to +0.11% PTA Fat% and +54 lbs PTA Fat), yield about 518 kg of milk fat over their entire lactation..

4. Breed for Livability

PTA LIV of +2.0% indicates cows are expected to stay and produce 2.9% more in herd than US Holstein breed average of 85.2%.

5. Select for Improving Overall Fertility

PTA DPR of +0.7%, PTA HCR of +1.8% and PTA CCR of +1.6% will improve pregnancy and conception rates of breeding heifers as well as of adult cows.

6. Improve Milking Speed with PTA MSPD

With a strong PTA for milking speed, daughters of this bull are expected to be faster milkers than the average Holstein cow, allowing them to release milk more efficiently and yield higher milk output, thereby improving labour efficiency and overall parlour performance.

7. Lower Difficult Births from Desirable PTAs of Calving Ease and Stillbirths.

PTA SCE of 1.3% and PTA DCE of 1.8% indicates that, its future mature daughters will be calving more easily and without difficulty.

8. Expect Functional Cows for Better Performance & Longevity

PTA Type of 0.83, PTA UDC of 0.88 and PTA FLC of 1.06

Daughters of MILLENIUM will be having overall better body conformation, well-formed and structured udders and strong feet and legs for better mobility. It results into more functional dairy cows, that perform and live longer in herd.

It is usually recommended for herds focusing on selling genetics for added value of show ring appearance.

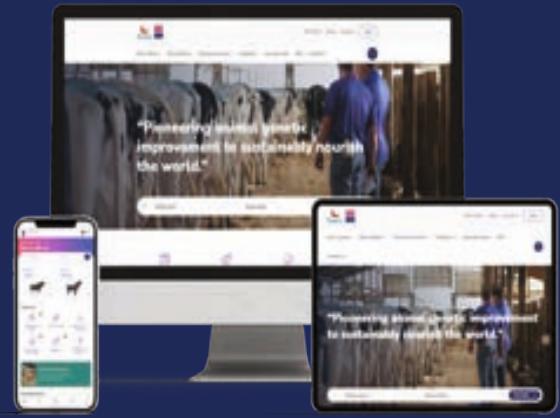
9. Other Body Conformation Traits

STA Fore-Udder Attachment: 0.88 Strong: Stronger fore udder attachment can hold big udders close to abdominal wall. These cows last long in milking herd.

STA Udder Height: 1.35 High: Higher the better. It is vital for udder capacity. Rear udder quarters provide more room for milk, supporting heavy milk production.

STA Udder Depth: 1.05 Shallow: Prefer shallow udders in your cows, which are compact and not too deep, preventing from udder related diseases.

Functional Genetics for Long-Lasting Performance



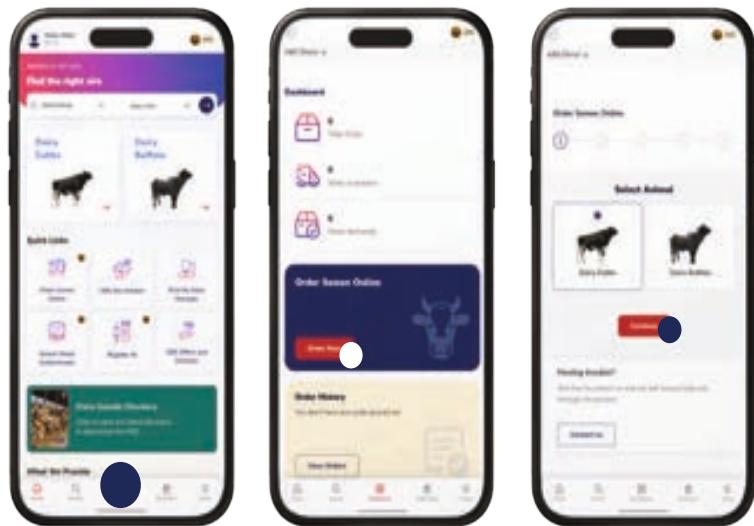
Scan QR Code

Book your online order now through
ABS Direct

ABS Direct

Browse and Buy Profitable Genetics Online at the Click of a Button

ABS Direct – A revolutionary platform where you can search and order best genetics for your dairy herd. Conventional as well as sexed genetics of different exotic and indigenous dairy cattle breeds are available, such as Holstein, Jersey, Gir, Sahiwal, Jersey Crossbred, and HF Crossbred. Genetics of Murrah buffalo breed is also available.

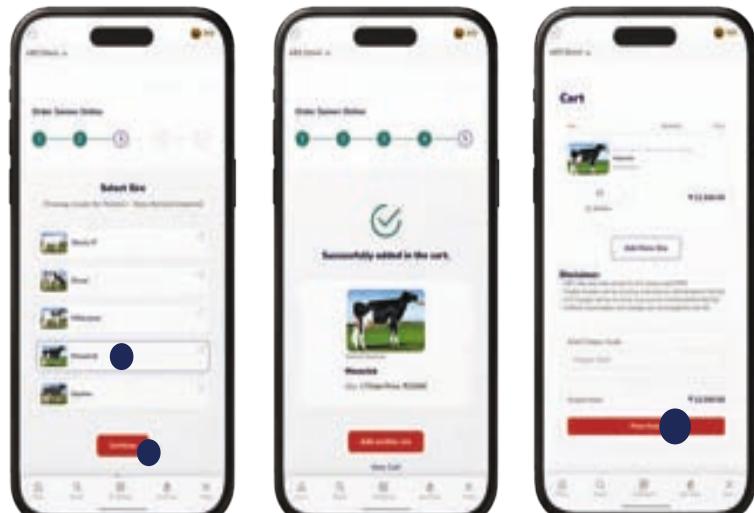

Get ABS India mobile application downloaded now in your smartphone and place order of your desired genetics through ABS Direct platform.

Follow step by step guide to place order now from your ABS India mobile application:

Step 1: Download & Login

Download the ABS India mobile application from the Google Play Store.

Open the app and log in using your registered mobile number via OTP. If you are a first-time user, enter your mobile number, verify OTP, and complete registration by adding basic details like name and location.


Step 2: Go to Order Section

After logging in, you will be redirected to the home page. Tap on the Dashboard icon from the footer and then press "Order Now" to start placing your order.

Step 3: Select Species & Sire

Select species, breed, and category to view the available sires. Choose a sire that matches your breeding goal.

You can view complete sire details by tapping the "i" icon, then press "Continue."

Step 4: Choose Semen Type & Place Order

Select the type of semen straw (Sexed or Conventional), add the required quantity, and tap "Add to Cart."

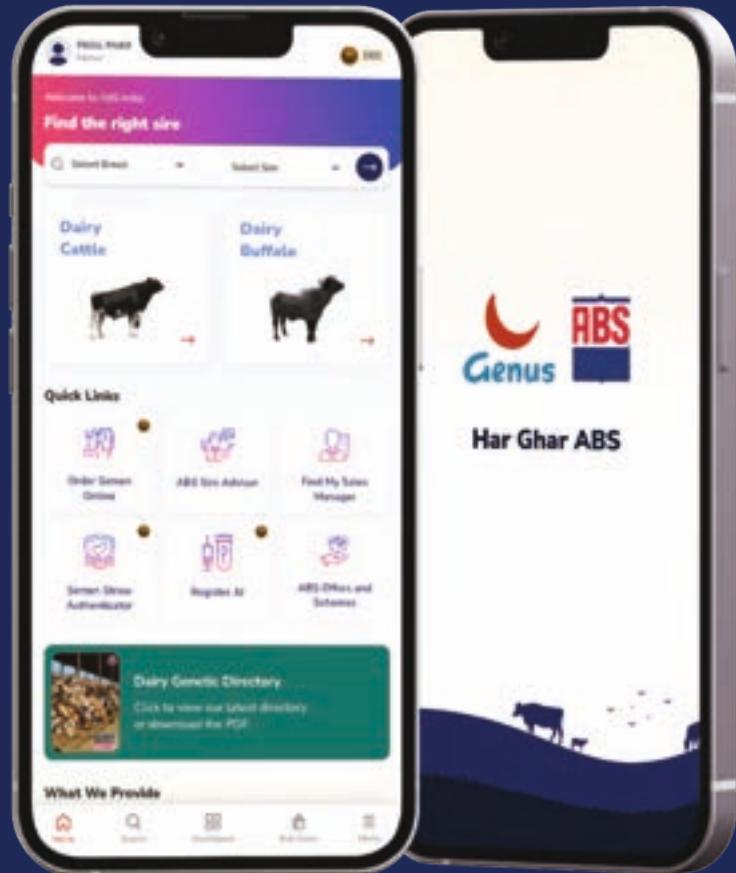
Review your order details in the cart and press "Place Order."

Step 5: Order Review & Confirmation

Once the order is placed successfully, it is reviewed by the ABS India team and assigned to the concerned area-specific ABS Sales/Business Manager.

You can expect a confirmation call from the ABS Sales/Business Manager.

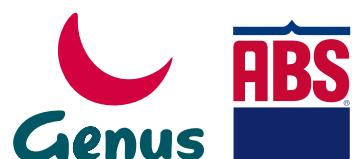
Long Term Drivers of Genetic Progress


Daughter of ABS ARMADA bull clinched 1st Prize in Milking, delivering an outstanding 56.44 litres in 24 hours.
Former: Inder Singh, Polka Dairy Farm, Tarn - Niharia, Dist - Patiala

ABS INDIA

Genus Breeding India Private Limited

Browse and BUY Right Genetics at the click of a button from ABS Direct


Genus Breeding India Private Limited (ABS India)

Registered Office: 5th Floor, C Wing, Eternia Premises CO-OP Soc, Near DA Unit No. 505, 506, Dagdi Bungalow, Wakdewadi, Pune, MH 411005, IN

- 📞 - 1800 210 9210
- 🌐 - www.genusabsindia.com
- ✉️ - abs.india@genusplc.com

Follow us on

- >f/GENUS-ABS-India
- in/genus-abs-india
- YouTube - /ABSINDIA
- Instagram - /india.abs

